Permutation Tests of NELS:88 Missing Data

ثبت نشده
چکیده

(make-array (list l1 l1) :initial-element 0)) (ra (mapcar #'(lambda (x y) (mapcar #'(lambda (z w) (setf (aref va x z) (aref smm-1 y w))) missind (iseq (length missind)))) missind (iseq (length missind))))) va)) 22) (list vi smm-1 smo))) (t (cond ((not (not missind)) (list (inverse sig))) (t (list 0 (mapcar #'(lambda (x) (elt x i)) data))))))) (defun impute (params missind presind mu data i) "Args: (PARAMS MISSIND PRESIND MU DATA I). Imputes the missing data vector for case i indexed by missind by regressing the missing values on the non-missing values. PARAMS is a list of matricies and lists. MISSIND are the indicies of the missing variables for case i. PRESIND are the indicies of the present variables for case i. MU is the current mean vector. DATA is a column list of the data. This funtion is only called if there are at least one present variable and at least one missing variable for case i. Returns the list of imputed and observed values for case i." (let* ((dati (mapcar #'(lambda (x) (elt x i)) data)) (newvals (+ (select mu missind) (inner-product (matmult (second params) (third params)) (-(select dati presind) (select mu presind)))))) (setf (select dati missind) newvals) dati)) (defun make-vi (smm-1 missind l1) "Args: smm-1 missind l1. Returns a matrix of size l1xl1 with smm-1 in place of the missing variables and zeros elsewhere." (let* (21 (setf results (list data mu (inverse siginv) (butlast likehist))) (print-results results))) (defun print-results (results) #| (format t "The Imputed Data Matrix is: ~%") (print-matrix (first results)) |# (format t "~% The Estimated Variable means are: ~%") (print (second results)) (format t "~%~% The Estimated Covariance Matrix is: ~%") (print-matrix (third results)) (format t "~%~% The Log-Likelihood History is: ~%") (print (elt results 3)) (format t "~% All of the above are in the variable results ~%") (def pp (plot-points (iseq (length (combine (elt results 3)))) (combine (elt results 3))))) (defun param-est (sig data missind presind mu i torf l1) "Args: (SIGMA DATA MISSIND PRESIND MU I TORF L1) Takes in the data, missing and present indicies and estimates the parameters of a multivariate normal distribution. SIG, the inverse covariance matrix should be in the form of a matrix. Data must be in the form of a list of vectors MISSIND must be in the form of a list for case i. PRESIND must also be in the form of a list for …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Race Was Constructed from Bys31a. See Nels:88 First Follow-up: Student Component Data Users' Manual Vol. 1 for More Details on How This Composite Was Constructed. the Values for Race Are

value of the variable SEX assigned on the school roster was used. If SEX was still missing, it was imputed from the respondent's name. On any records for which this could not be done unambiguously, this variable had a value of 1 or 2 randomly assigned.

متن کامل

Volunteer Service by Young People From High School Through Early Adulthood

Authors: Mike Planty Michael Regnier Education Statistics Services Institute This Statistics in Brief examines the patterns and characteristics of individual involvement in community service activities from high school through early adulthood. Using data from the National Education Longitudinal Study of 1988 (NELS:88), this Brief describes the characteristics of young adults who volunteered, wh...

متن کامل

Academic Aspiration and Postsecondary Attainment: Evidence from the National Education Longitudinal Study of 1988 (NELS:88)

........................................................................................................................................................ 3 Introduction .................................................................................................................................................. 4 Literature Review .................................................................

متن کامل

An Application of Multilevel Model Prediction to Nels:88

Multilevel modeling is often used in the social sciences for analyzing data that has a hierarchical structure, e.g., students nested within schools. In an earlier study, we investigated the performance of various prediction rules for predicting a future observable within a hierarchical data set (Afshartous & de Leeuw, 2004). We apply the multilevel prediction approach to the NELS:88 educational...

متن کامل

Supplement to : Legewie , Joscha , and Thomas A . DiPrete . 2014 . “ Pathways to Science and Engineering Bachelor ’ s Degrees for Men and Women

The analyses presented in this article are based on the NELS 1988 to 2000, which is a nationally representative sample of about 25,000 eighthgrade students who were first surveyed in spring 1988. Subsamples of these students were resurveyed in 1990, 1992, 1994, and 2000. We restrict the NELS 1988 to 2000 sample to students who participated in the 8thand 12-grade surveys, and the 2000 follow-up,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994